

MOXIE: Generating Oxygen On Mars

Dr. Asad Aboobaker

Thermal Systems Engineer

Instrument and Payload Thermal Engineering (353F)

September 18, 2017

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Outline

- Mars2020 and ISRU
- MOXIE
- MOXIE hardware implementation and technical challenges
- The future...

Science goals:

- Looking for Past Habitability
- Seeking Biosignatures
- Caching Samples
- Preparing for Humans

ISRU: "Living off the land"

ISRU: In-situ Resource Utilization -- Using the resources available where you are to make useful things

Goal: Avoid having to bring everything from Earth (drives launch mass)

Possible usable resources in solar system:

- Minerals from Moon: raw materials, oxygen
- Water (ice) from asteroids/comets
- Gases from gas giants

ISRU on Mars

Resources on Martian surface:

- Rocks
- Dust
- More dust
- Water (ice caps, underground?)
- Mars rovers/landers
- · CO₂
 - Atmosphere: 95% CO₂, ~3% N₂, ~2% Ar
 - Low density: ~1/100 Earth pressure (2-12 torr, average ~7 torr)

What can we do with CO₂?

- CO₂ has O₂, and O₂ is useful breathing,
 oxidizer
 - Mars ascent requires ~35 metric tons oxygen
 - Requires launching ~200 metric tons from Earth
- What if we could make O₂ on Mars?

ISRU on Mars: Human-scale

Drake 2009

MOXIE: The Mars Oxygen ISRU Experiment

- Goal: demonstrate the production of oxygen (O₂) from Mars CO₂ atmosphere
- PI: Michael Hecht, MIT Haystack Lab
 - Deputy PI: Jeff Hoffman, MIT AeroAstro
- Project Management and implementation: JPL
- MOXIE is a NASA "Class D" instrument: lower cost, higher risk tolerance, ideal for new technology infusion

- Supported by HEO/AES, STMD/Tech Demos
- Mars 2020 Project managed by SMD

Why send MOXIE to Mars?

- Reduce risk/mature the technology for flight
- Inform future designs / Learn how to scale up
- Send a message to an interested & enthusiastic public

Public engagement

SECTIONS

HOME

Q SEARCH

The New York Times

SPACE & COSMOS

NASA to Test Making Oxygen, Key to Rocket Fuel, on Mars

SUBSCRIBE

AMERICAN

English v Cart O Sign In | Register

SHARE

LATEST

SPACE

Next Mars Rover Will Make Oxygen from CO2

The spacecraft, due in 2020, will have a reverse fuel cell to produce to breathe

NASA's next Mars rover will make oxygen, look for farmland

By Ben Brumfield, CNN Updated 11:11 AM ET, Sun August 3, 2014 Scientist

HOME NEWS TECHNOLOGY SPACE PHYSICS HEALTH EARTH HUMANS LIFE TOPICS EVENTS

DAILY NEWS 31 July 2014

Next rover will pull oxygen from Martian air

By Lisa Grossman

MOXIE Top-level requirements

- Generate oxygen on Mars minimum 6g/hr at 5 torr / 0° C environment
- Produce oxygen at >98% purity
- Operate at least 10 times in various environmental conditions over Mars2020 mission life (1.5 Mars years)

MOXIE System Block Diagram

MOXIE System Block Diagram

Solid Oxide Electrolysis

"Reverse Fuel Cell"

Doped ceramic (yttria-stabilized zirconia) conducts O₂ ions at high temp

Solid Oxide Electrolysis – connecting cells

- High chromium alloy (matched CTE to ceramic electrolyte)
- Approximately 100mm x 50mm x 2mm
- Contains manifolding for gas streams

SOXE – connecting cells

SOXE stack components

SOXE stack

- Solid Oxide Electrolysis Units ("stacks")
- Configured as two electrically independent stacks of 5 cells each
- Cells, Interconnects, and End/Midplates held together by glass seals
- Inconel supply tubing and electrical leads
- Operating temperature of 800°C
- 6 g/hr O₂ out requires ~50 g/hr CO₂ in
- Stacks built and provided by partner Ceramatec, Inc. (now Oxeon Energy)

SOXE stack operating envelope

Cycle-to-Cycle Degradation

SOXE Performance

- Generate oxygen on Mars minimum 6g/hr at 5 torr / 0° C environment: >1g/hr per cell (10 cells)
- Produce oxygen at >98% purity: All recent stacks exceed 99.9%
- Operate at least 10 times in various environmental conditions over Mars2020 mission life (1.5 Mars years): >45 cycles w/ no failures
- Oxygen production limited by:
 - Inlet flow (pump capacity, gas density at landing site)
 - Available power (4A limit, equiv. to 12 g/hr)
 - SOXE capability (10 cells, 22.7 cm²/cell)

SOXE Packaging

- Package SOXE stack, SOXE heaters, and inlet gas heat exchanger
- Maintain at 800° C with < 70 W heater power
- Minimize total energy (m C_p ΔT) required for warmup
- ...and it all has to survive launch environments (concern: brittle ceramics in SOXE)
- ...and provide mechanical compression along stack axis: 800 to 4000 N (180 to 900 lb)

SOXE Assembly

Stack compression

- Evaluated various options (cold springs, hot springs, compress through insulation)
- Compressing through insulation lowest mass, lowest energy
- Requires structural insulation must be able to withstand full compressive loads
- Key concept: Heritage
 - Use insulation (Min-K) implemented in MMRTG
 - Low conductivity, sufficient strength
 - Issue: Min-K slowly relaxes with time, especially at high temperatures

SOXE Assembly

Prototype SOXE Assembly

Prototype SOXE Assembly

Gas Delivery – Scroll Compressor

- Scroll pump chosen for real time compression to ~1 bar without intermediate storage.
- Energy efficient, can be scaled at least 10-fold. Lifetime TBD.
- Low-speed (2000-4000 RPM)

Scroll Compressor operating principle

https://www.youtube.com/watch?v=CXmFSb7Tlhs

MOXIE Scroll Compressor

MOXIE Scroll Compressor

- 1. Inlet
- 2. Fill Housing with CO₂
- 3. CO₂ Enters Scroll Inlets Locations
- 4. Compression within scrolls
- 5. Discharge through cross hole
- 6. Outlet

Performance: 83g/hr for inlet gas P=7 Torr, T= 20°C

 $P_{in} = 120 \text{ W}$

Mass: ~2kg

MOXIE Scroll Compressor Performance

Measured performance: 83g/hr for inlet gas P=7 Torr, T= 20°C

 $P_{in} = 120 \text{ W}$

Mass: ~2kg

Gas Analysis

Anode:

- Pyroscience O₂ fluorescence sensor (0-100% O₂)
- smartGAS NDIR CO₂ sensor (0-5% CO₂)

Cathode

- smartGAS NDIR CO₂ sensor (0-100%) CO₂
- smartGAS NDIR CO sensor (0-100%) CO
- Flow meter, pressure sensors, stack current

Packaging

Total mass: ~17 kg

Peak power draw: 300 W

Total energy allocation per run: 1000 W-h

Inlet filter assembly

MOXIE on M2020

A day in the life of MOXIE

MOXIE Status

- Currently building flight hardware!
- Preparing for integrated system-level testing
- Flight I&T slated to begin in March 2018, delivery to M2020 in October 2018

Looking toward the future: Mass

MOXIE (12 G/HR, 16.4 KG)

Pre-Decisional Information -- For Planning and Discussion Purposes Only

Looking toward the future: Mass Scaling

- Scales with production rate R (x167):
 - SOXE cell mass
 - Compressor mass
 - Filter assembly
- Scales with # of modules (x6)
 - Sensors
 - Electronics
- Scales with surface area R^{2/3} (x30)
 - Thermal (insulation, etc.)
 - Structure

Looking toward the future: Mass

Looking toward the future: Power

Pre-Decisional Information -- For Planning and Discussion Purposes Only

Looking toward the future: Power Scaling

- Scales with production rate R (2000/12 (g/hr) = x167):
 - Electrolysis (including enthalpy) rigorously!
 - Compression
- Scales with # of modules (x6, 334 g/hr each, ~sixty 10x10 cm cells)
 - Sensors
 - Electronics
- Scales with surface area R^{2/3} (x30)
 - SOXE heat loss
- Expected improvements:
 - Compression power assumed to be 70% of scaled value
 - Lower elevation (like MSL or VL2) gets you to 75%
 - · Reduce output pressure
 - Increase utilization (more SOXE cells or CO₂ recovery)
 - Custom DC converters improve from 83% to 90% efficient
 - Gas pre-heat replaced by heat exchange with exhaust
 - Sensor panel captures heat from, e.g., pump body

Looking toward the future: Power

Pre-Decisional Information -- For Planning and Discussion Purposes Only

jpl.nasa.gov

© 2017 California Institute of Technology. Government sponsorship acknowledged.

Backup

MOXIE Gas Flow Schematic

Aerogel

- Extremely low conductivity, but...
 - Transparent in infrared
 - Brittle
- Solution: Reinforced aerogel composite (JPL-developed)
 - Opacified with TiO₂
 - Reinforced with silica fibers
 - Not as good thermally, but much easier to work with!

Aerogel

Compression power

